

Published on Web 09/29/2010

Redox-Active Ligand-Mediated Oxidative Addition and Reductive Elimination at Square Planar Cobalt(III): Multielectron Reactions for Cross-Coupling

Aubrey L. Smith,[†] Kenneth I. Hardcastle,[‡] and Jake D. Soper*,[†]

School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, and X-ray Crystallography Center, Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322

Received July 13, 2010; E-mail: jake.soper@chemistry.gatech.edu

Abstract: Square planar cobalt(III) complexes with redox-active amidophenolate ligands are strong nucleophiles that react with alkyl halides, including CH₂Cl₂, under gentle conditions to generate stable square pyramidal alkylcobalt(III) complexes. The net electrophilic addition reactions formally require 2e⁻ oxidation of the metal fragment, but there is no change in metal oxidation state because the reaction proceeds with 1e⁻ oxidation of each amidophenolate ligand. Although the four-coordinate complexes are very strong nucleophiles, they are mild outer-sphere reductants. Accordingly, addition of alkyl- or phenylzinc halides to the five-coordinate organometallic complexes regenerates the square planar starting materials and extrudes C-C coupling products. The net 2e⁻ reductive elimination reaction also occurs without a oxidation state change at the cobalt(III) center. Together these reactions comprise a complete, well-defined cycle for cobalt Negishi-like cross-coupling of alkyl halides with organozinc reagents.

The utility of palladium in cross-coupling catalysis derives from its ability to mediate 2e⁻ oxidative addition and reductive elimination steps for selective assembly of C-C bonds.¹ Because later first-row metal ions typically exist in oxidation states that vary by only 1e⁻, they are often prone to radical reactions with organic substrates.² Accordingly, development of base metal catalysts for selective cross-coupling cycles requires strategies to effect 2e⁻ redox reactions over potentially competing 1e⁻ pathways.³ An emerging approach to multielectron chemistry employs redox "noninnocent" ligands as reservoirs of electrons for bond-making and bondbreaking reactions at coordinatively unsaturated metals.^{2,4} We have utilized this strategy to prepare square planar cobalt complexes that are strong nucleophiles but mild 2e⁻ reductants. We report here how these properties facilitate well-defined 2e⁻ pseudo-oxidative addition and reductive elimination reactions at cobalt(III), comprising both steps of a catalytic cycle for Negishi-like cross-coupling of alkyl halides with alkyl- and arylzinc reagents.

The ability of amidophenolate ligands to deliver electrons for bond-forming redox reactions at square planar cobalt(III) centers was previously demonstrated in reactions of $[Co^{III}(ap^{Ar})_2]^-$ (where $[ap^{Ar}]^{2-}$ is $[ap^{Ph}]^{2-} = 2,4$ -di-*tert*-butyl-6-(phenylamido)phenolate or $[ap^{IPr}]^{2-} = 2,4$ -di-*tert*-butyl-6-(2,6-diisopropylphenylamido)phenolate) with chlorine electrophiles.⁵ During the course of these studies, we observed that addition of excess CH₂Cl₂ to purple CH₃CN solutions containing the $[Co^{III}(ap^{Ph})_2]^-$ anion gave quantita-

Figure 1. Solid-state structures of (a) $Co^{III}(CH_2CI)(isq^{Ph})_2$ drawn with 50% probability ellipsoids. The $[isq^{Ph}]^{-}$ ligand hydrogen atoms are omitted for clarity. (b) Schematic of selected bond lengths (Å) drawn to correspond to Figure 1a.

tive conversion to a bright green material over hours at 25 °C. Electrospray ionization mass spectra (ESI-MS) of THF solutions containing the green product showed a molecular ion at 698 m/zthat was shifted to 700 m/z when the reaction was performed with CD₂Cl₂ in place of CH₂Cl₂, corresponding to the molecular weights of the [Co^{III}(ap^{Ph})₂]⁻ reactant and a [CH₂Cl] or [CD₂Cl] fragment. Green crystals of the protio material were obtained from concentrated CH₃CN-CH₂Cl₂ solution. The X-ray structure contains a square pyramidal chloromethyl complex (Figures 1, S1). As compared to [Co^{III}(ap^{Ph})₂]⁻, the aminophenol ligand metrical data exhibit systematic geometrical changes that are characteristic of a change in ligand oxidation state. In particular, the contracted C-O and C-N bond distances and the quinoid-like pattern of four long and two short C-C bond distances about the aminophenol ring (Figure 1b) match those typical for $[isq^{Ph}]^{\bullet-}$ ($[isq^{Ph}]^{\bullet-} = 2,4$ -ditert-butyl-6-(phenylimino)semiquinonate),⁶ suggesting that the product is best described as Co^{III}(CH₂Cl)(isq^{Ph})₂. This formulation implies that the reaction occurs with a net 2e⁻ oxidation of the $[Co^{III}(ap^{Ph})_2]^-$ fragment, but the oxidation state of the cobalt center is unchanged because each ligand supplies one electron (Scheme 1a).

THF solutions of Co^{III}(CH₂Cl)(isq^{Ph})₂ are stable for days in the dark at 25 °C but degrade in light to cleanly afford Co^{III}(ap^{Ph})(isq^{Ph}), the product of Co–CH₂Cl homolysis.⁷ Accordingly, when monitored at wavelengths >700 nm, the reaction of CH₂Cl₂ with $[Co^{III}(ap^{Ph})_2]^-$ in CH₃CN exhibits clean pseudo-first-order kinetics with an isosbestic point at 911 nm (Figure S2).

[†] Georgia Institute of Technology.

[‡] Emory University.

Addition of 1 equiv of EtBr to Na[Co^{III}(ap^{Ph})₂] in CH₃CN similarly yields a green, light-sensitive, square pyramidal ethyl complex suitable for analysis by X-ray diffraction. As in the reaction with CH₂Cl₂ described above, systematic changes in the C–O, C–N, and C–C bond distances (Figure 2) indicate that the amidophenolate chelates in [Co^{III}(ap^{Ph})₂]⁻ are each oxidized by 1e⁻, so the product is best formulated as Co^{III}(Et)(isq^{Ph})₂. Solid Co^{III}(Et)(isq^{Ph})₂ is stable for >2 d in the dark at 25 °C, and the UV–vis spectrum of a THF solution is unchanged over 4 h at 25 °C, suggesting that the five-coordinate alkyl complexes are relatively inert to β -hydrogen elimination.

Figure 2. Solid-state structures of (a) $Co^{III}(Et)(isq^{Ph})_2$ drawn with 50% probability ellipsoids. The $[isq^{Ph}]^{-}$ ligand hydrogen atoms are omitted for clarity. (b) Schematic of selected bond lengths (Å) drawn to correspond to Figure 2a.

A comparison of the relative rates of organohalide addition to $[Co^{III}(ap^{ph})_2]^-$ revealed several pertinent trends: (1) Primary alkyl

Scheme 2

halides react with [Co^{III}(ap^{Ph})₂]⁻ to afford the corresponding alkylcobalt(III) complexes, and the relative rates of the reactions parallel the lability of the halide. For instance, addition of 5 equiv of CH₃I to 0.01 M [Co^{III}(ap^{Ph})₂]⁻ in CH₃CN affords quantitative conversion to $Co^{III}(CH_3)(isq^{Ph})_2$ in seconds, whereas complete reaction with CH_2Cl_2 takes ~12 h under the same conditions. The analogous reaction with CH2ClBr requires ~30 min and gives exclusively the Co^{III}(CH₂Cl)(isq^{Ph})₂ product, as determined by ESI-MS. $[Co^{III}(ap^{Ph})_2]^-$ reacts with CH₃OTf (OTf $^-$ = trifluoromethanesulfonate) to afford $Co^{III}(CH_3)(isq^{Ph})_2$ at a rate comparable to that of the fast reaction with CH₃I. (2) All of the addition reactions are slower with more sterically demanding carbon centers. Accordingly, reactions with EtI or EtBr form $Co^{III}(Et)(isq^{Ph})_2$ in <1 min and ~1 h, respectively, and reaction of [Co^{III}(ap^{Ph})₂]⁻ with isopropyl iodide requires 3 h. PhCH₂Br reacts with [Co^{III}(ap^{Ph})₂]⁻ to give Co^{III}(CH₂Ph)(isq^{Ph})₂ in 1 d, and >2 d are required for complete reaction with PhCH₂Cl. (3) No addition reaction occurs at sp²hybridized carbon centers. [Co^{III}(ap^{Ph})₂]⁻ is inert to iodobenzene and vinyl bromide over weeks at 25 °C. (4) The addition reactions are highly sensitive to steric bulk at the cobalt center. For example, all alkyl halide additions to [CoIII(apiPr)2]- are significantly slowed relative to [Co^{III}(ap^{Ph})₂]⁻. All of these observations are collected in Table S1.

Four mechanisms that are consistent with the UV-vis kinetics were considered for generation of $Co^{III}(R)(isq^{Ar})_2$ and X⁻ from $[Co^{III}(ap^{Ar})_2]^-$ and R-X (Scheme 2). Two invoke six-coordinate oxidative addition $[Co^{III}X(R)(isq^{Ph})_2]$ products as unobserved intermediates followed by rapid loss of X⁻, but the data above suggest that both of these pathways involving Co-X bond formation can likely be ruled out. In particular, the rapid reaction of $[Co^{III}(ap^{Ph})_2]^-$ with CH₃OTf suggests that a radical mechanism (*iv*) of initial X• transfer is unlikely, and substrates such as CH₃I and CH₃OTf do not typically react by a concerted addition mechanism (*iii*).⁸

Scheme 3

The two remaining mechanisms both invoke conversion of $[Co^{III}(ap^{Ar})_2]^-$ directly to the five-coordinate $Co^{III}(R)(isq^{Ar})_2$ product without Co-X bond formation, but these represent limits of the potential 1e⁻ vs 2e⁻ redox pathways. The observed increase in reaction rate with leaving group lability, $I^- > Br^- > Cl^-$, does not distinguish mechanism (i) versus (ii), and previously reported reactions of Co^{III}(ap^{Ar})(isq^{Ar}) with sources of net [Cl•] to generate Co^{III}Cl(isq^{Ar})₂ demonstrate the ability of Co^{III}(ap^{Ar})(isq^{Ar}) to function as a radical trap.⁵ However, the sum of the other experimental observations does not support an electron transfer (ET) mechanism (*ii*). For example, the $[Co^{III}(ap^{iPr})_2]^-$ anion is a better $1e^-$ reductant than [Co^{III}(ap^{Ph})₂]^{-,5} but it reacts with alkyl halides at a significantly decreased rate. Additionally, its slow reactions with 2° alkyl halides as compared to 1° haloalkanes are inconsistent with a mechanism of initial outer-sphere ET (ii). Instead, this sensitivity to steric hindrance at carbon, as well as to steric encapsulation of the cobalt(III) center by the [ap^{iPr}]²⁻ ligands, is most consistent with the S_N 2-type mechanism (*i*) wherein Co-R bond formation requires direct attack of the nucleophilic cobalt center on the alkyl halide electrophile.9,10

The accessibility of the alkylcobalt(III) complexes prompted us to pursue reductive C-C bond-forming reactions with organozinc compounds. Treating Co^{III}(Et)(isq^{Ph})₂ with PhZnBr (2-10 equiv) in a 1:1 CH₃CN/THF solution results in an immediate discharge of the green color and formation of the reduced cobalt fragment [Co^{III}(ap^{Ph})₂]⁻ (Scheme 1b).¹¹ Complete consumption of 0.01 M Co^{III}(Et)(isq^{Ph})₂ requires >6 equiv of PhZnBr, presumably because phenyl transfer is sterically disfavored (Scheme 3b). GC-MS analysis of the reaction mixtures shows the expected cross-coupling product ethylbenzene in 10-15% yield (Table S2). The analogous reactions with hexylzinc bromide similarly afford n-octane in 5-15% yield. Both reactions give small quantities of the corresponding homocoupling byproducts, biphenyl (<2%) and dodecane (<7%). Notably, addition of greater excesses of RZnX gives nonstatistical product distributions, with increased yields of the cross-coupling products relative to homocoupling.¹² These data imply that the C-C bond-forming reactions do not occur by radical Co-Et homolysis at Co^{III}(Et)(isq^{Ph})₂. Studies to elaborate the reductive elimination mechanism, and to optimize conditions for catalytic cross-coupling (Scheme 3), are in progress.

In sum, the ability of redox-active ligands to facilitate both 2e⁻ pseudo-oxidative addition and reductive elimination reactions at mononuclear square planar cobalt(III) complexes is predicated on two properties: (1) The $[Co^{III}(ap^{Ar})_2]^-$ species are very strong nucleophiles, reminiscent of "supernucleophilic" cobaloxime(I) complexes and square planar iridium(I) compounds that undergo S_N 2-type oxidative addition of R-X.^{7,13} However, these cobalt(III) anions are unusual nucleophiles. They have diradical S = 1 ground states,⁵ and their reactions with haloalkanes occur without a change in oxidation state at the cobalt(III) centers because the redox-active aminophenol-derived ligands in [Co^{III}(ap^{Ar})₂]⁻ supply both of the necessary redox equivalents for the net 2e⁻ transformation. (2) The [Co^{III}(ap^{Ar})₂]⁻ complexes are 200–400 mV less reducing than most cobaloxime(I) species.⁵ This permits reactions of Co^{III}(Et)(isq^{Ph})₂ with organozinc reagents to give the products of 2e⁻ reductive elimination, also without a change in cobalt oxidation state. The redox-active ligand-mediated reactions are therefore complementary to recently reported ligand-derived oxidative addition and reductive elimination at d⁰ metal complexes.^{4b-d} Notably, the surprising proclivity for 2e⁻ reactions over 1e⁻ redox forms a basis for development of new well-defined first-row metal catalysts for selective cross-coupling cycles.

Acknowledgment. We thank the ACS Petroleum Research Fund (45130-G3), the NSF (CAREER CHE-0844693), and the Georgia Institute of Technology for financial support. We acknowledge David Bostwick for mass spectrometry.

Supporting Information Available: Complete synthetic and experimental details; selected UV-vis absorption spectra; collected reaction rates for organohalide addition to [Co^{III}(ap^{Ph})₂]⁻; tabulated yields from organozinc halide coupling reactions; X-ray crystallographic data and files in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) For example, see: Metal-Catalyzed Cross-Coupling Reactions; Diederich, Kang, P. J., Eds.; Wiley-VCH: Weinheim, Germany, 1998.
 Chirik, P. J.; Wieghardt, K. Science 2010, 327, 794–795.
 For some recent examples, see: (a) Czaplik, W. M.; Mayer, M.; Cvengros, V. K. Science 2010, 201
- J.; Jacobi von Wangelin, A. ChemSusChem 2009, 2, 396-417. (b) Oshima, K. Bull. Chem. Soc. Ipn. 2008, 81, 1–24. (c) Cahiez, G.; Moyeux, A. Chem. Rev. 2010, 110, 1435–1462. (d) Sherry, B. D.; Fürstner, A. Acc. Chem. Res. 2008, 41, 1500–1511. (e) Gosmini, C.; Bégouin, J.-M.; Moncombie, A. Chem. Commun. 2008, 3221-3223. (f) Frisch, A. C.; Beller, M. Angew. Chem., Int. Ed. 2005, 44, 674-688. (g) Noda, D.; Sunada, Y.; Hatakeyama, T.; Nakamura, M.; Nagashima, H. J. Am. Chem. Soc. 2009, 131, 6078-6079. (h) Rudolph, A.; Lautens, M. Angew. Chem., Int. Ed. 2009, 48, 2656-(ii) Kutophi, A., Lauchs, M. Angew. Chem., Int. Ed. 2007, 49, 2004
 (i) Liu, W.; Cao, H.; Lei, A. Angew. Chem., Int. Ed. 2010, 49, 2004
 (j) Cardenas, D. J.; Phapale, V. B. Chem. Soc. Rev. 2009, 38, 1598–
 1607. (k) Zhou, J. S.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 14726–
 14727. (l) Vechorkin, O.; Hu, X. Angew. Chem., Int. Ed. 2009, 48, 1–5.
- (4) Vechorkin, O.; Hu, X. Angew. Chem., Int. Ed. 2009, 46, 1–3.
 (4) For recent examples, see: (a) Nguyen, A. I.; Blackmore, K. J.; Carter, S. M.; Zarkesh, R. A.; Heyduk, A. F. J. Am. Chem. Soc. 2009, 131, 3307–3316.
 (b) Ketterer, N. A.; Fan, H.; Blackmore, K. J.; Yang, X.; Ziller, J. W.; Baik, M.-H.; Heyduk, A. F. J. Am. Chem. Soc. 2008, 130, 4364–4374. (c) Unertication of M. B. Lurdek, A. F. J. Am. Chem. Soc. 2009, 132, 4364–4374. Haneline, M. R.; Heyduk, A. F. J. Am. Chem. Soc. 2006, 128, 8410–8411.
 (d) Stanciu, C.; Jones, M. E.; Fanwick, P. E.; Abu-Omar, M. M. J. Am. Chem. Soc. 2007, 129, 12400–12401. (e) Bowman, A. C.; Milsmann, C.; Chem. Soc. 2007, 129, 12400–12401. (e) Bowman, A. C.; Milsmann, C.; Atienza, C. C. H.; Lobkovsky, E.; Wieghardt, K.; Chirik, P. J. J. Am. Chem. Soc. 2010, 132, 1676–1684. (f) Lu, C. C.; Weyhermüller, T.; Bill, E.; Wieghardt, K. Inorg. Chem. 2009, 48, 6055–6064. (g) Lippert, C. A.; Arnstein, S.; Sherill, D.; Soper, J. D. J. Am. Chem. Soc. 2010, 132, 3879– Construction. 3892
- (5) Smith, A. L.; Clapp, L. A.; Hardcastle, K. I.; Soper, J. D. Polyhedron 2010, 29, 164–169.
- (6) (a) Bill, E.; Bothe, E.; Chaudhuri, P.; Chlopek, K.; Herebian, D.; Kokatam, (a) Bin, E., Bonc, E., Chaddhai, Y., Choper, K., Herberg, K., Herberg, K., Herberg, K., Kathar, S., Kathar, S., Kathar, K., Chem, Teur, J. 2005, 11, 204–224. (b) Poddel'sky, A. I.; Cherkasov, V. K.; Abakumov, G. A. Coord. Chem. Rev. 2009, 253, 291–324.
- (7) The Co-C bond in alkylcobalmins and coezyme B12 models is typically weak and homolyzed in visible light. See: Schrauzer, G. N.; Sibert, J. W.; Windgassen, R. J. J. Am. Chem. Soc. 1968, 90, 6681-6688.
- Crabtree, R. H. The Organometallic Chemistry of the Transition Metals, 3rd ed.; Wiley: New York, 2001.
- (9) The slow reaction of $[Co^{III}(ap^{Ph})_2]^-$ with PhCH₂X likely further highlights the sensitivity of the reaction to steric hindrance.
- (10) Reactions with haloalkanes that are probes of radical intermediates (e.g., (bromomethyl)cyclopropane) were inconclusive because the ¹H NMR spectrum of the organometallic alkylcobalt(III) products are broadened by trace quantities of the $S = \frac{1}{2} \operatorname{Co}^{III}(\operatorname{ap}^{Ar})$ (decomposition product. (11) The speciation of reduced cobalt complex is concentration dependent.
- $[Co^{III}(ap^{FI})_2]^-$ reacts rapidly with PhZnBr to form an equilibrium adduct that we tentatively formulate as $[Co^{III}(Ph)(ap^{FI})_2]^{2-}$.
- (12) In both reactions the balance of the cobalt-derived ethyls was not found. These may form butane, which is not quantitated by the GC-MS method used.
- (13) For example, see: Labinger, J. A.; Osborn, J. A. Inorg. Chem. 1980, 19, 3230-3236, and references therein.

JA106212W